I bought the book Java Puzzlers by Josh Bloch and Neal Gafter a few years ago and enjoyed it. If you aren't familiar with it, it covers rare, odd and usually counter-intuitive edge cases of Java in a brain-teaser style of presentation. For both a Java user and an analytical mind its a fascinating book.
Well today I stumbled onto a puzzler of my own and thought I'd share. Can you tell me what the main method of this class will output?
1 : public class Parser {
2 :
3 : private static <T> T parse(String s, Class<T> type) {
4 : // Simple implementation only supports long primitive
5 : if(type == long.class) {
6 : return (T) Long.parseLong(s);
7 : }
8 : throw new UnsupportedOperationException(
9 : "parse() only supports long right now!");
10: }
11:
12: public static void main(String[] args) {
13: System.out.println(parse("1234", long.class).equals(1234));
14: }
15: }
So what gets written to standard output? If you said 'true', then you'd be wrong. If you said 'false', then you'd also be wrong! The code above won't even compile! There are a few features of Java that are colliding here to give odd results, including generics, type erasure, primitive types and autoboxing.
So what happens exactly? You'll get a compile error like this:
Error:line (6) inconvertible types
found : long
required: T
The error is on the return statement line of the parse() method. Long.parseLong() returns a primitive long, but since a parameter type can only represent an Object type, you can't cast a primitive to an parameter type. Also, it appear auto-boxing doesn't work in this case, so it fails with a compiler error.
But wait, doesn't the code explicitly use the Class object that represents the long primitive, long.class? But see 'long.class' is syntactic sugar for the constant field Long.TYPE which is of the parameterized type Class<Long> since type variables only support using Objects.
So realizing this, we can change the return statement to use a Long instead of a long:
return (T) Long.valueOf(s);
Now the code will compile, but something is still wrong because it prints out 'false'.
Knowing that the return type of parse("1234", long.class) is Long, take another look at the puzzle. Can you see the problem? This one is subtle. The numeric literal '1234' that is inside the call to equals() needs to be auto-boxed and since it is a literal int, it is boxed into a Integer. But an Integer object isn't considered equal to a Long object because they are different types, so equals() returns false.
So it a few interesting features combine for some strange behavior. Hope you enjoyed this puzzle!
Comments